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Abstract Motivated by recent studies of gas permeation through polymer networks,
we consider a collection of ordinary random walks of fixed length �, placed randomly
on the bonds of a square lattice. These walks model polymers, each with � segments.
Using computer simulations, we find the critical concentration of occupied bonds
(i.e., the critical occupation probability) for such a network to percolate the system.
Though this threshold decreases monotonically with �, the critical “mass” density,
defined as the total number of segments divided by total number of bonds in the
system, displays a more complex behavior. In particular, for fixed mass densities,
the percolation characteristics of the network can change several times, as shorter
polymers are linked to form longer ones.

1 Introduction

Offering wide-ranging applications and considerable theoretical challenges, the
percolation problem is a venerable one in statistical mechanics [1]. Here, we revisit the
bond percolation problem on a square lattice, motivated by recent studies of gas per-
meation through polymer networks [2,3]. When the bonds are distributed randomly,
many analytically exact results are available. When the bonds are correlated, much
less is known. Here, we focus on correlations induced by joining the bonds together,
into chains of Gaussian walks. We begin with a brief description of the experiments
and of our model for thin films. In the next section, we provide simulation data for
percolation of such a collection of (finite) random walks. The last section is devoted
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to generalizations of the model to the physical dimension and the wider context of
currents through the network of Gaussian chains.

Thin films are common in daily usage and generally, the more impermeable (or
selective) the material is, the more desirable. As an example, if a ‘good’ film is used
to wrap garlic stored in the refrigerator, the odor will be contained so that the flavors
of other foods remain unaffected. Obviously, there are less mundane examples in
industrial and research settings. Such films are often prepared by quenching a poly-
mer melt and stretching the resultant, so that the end product is a random network of
polymers. Permeation experiments consist of mounting a film across a vacuum
chamber, injecting various gases into one part of the chamber and maintaining
constant pressure, and then measuring the pressure in the other part as a function
of time. Apart from a short transient period, the pressure increases linearly, indicating
that the molecules within the film have settled into a steady state, with a constant
concentration gradient across the film and a steady current through it. The goal
is to characterize the dependence of these currents on how the film is prepared,
how long it has aged, and under what conditions the aging process has taken place
[2,4].

Our model and goal, especially in this article, is much more modest. To begin, let
us consider a two-dimensional version of this problem, so that the film is just a strip
of finite width (modeling the film thickness) and infinite length (modeling the macro-
scopic dimension of the film). In practice, however, we only use L × L samples in
simulations (with L ≤ 8192). On such a square lattice, we randomly place M ordinary
random walks on the bonds. Each walk is a chain of � bonds, modeling a polymer
with � segments. In Fig. 1, we illustrate a realisation with M = 11 and � = 8 on a
8 × 10 lattice. Note that the polymers are not self-avoiding, so that a bond can be
occupied by any number (m) of segments. The particles which model the gas mole-
cules (not shown in Fig. 1) occupy the cells and diffuse by hopping to nearest-neighbor

.Bond Occupation:

single
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Fig. 1 An example of M = 11 “octa-mers” (Gaussian chains of � = 8 bonds) on a 8 × 10 lattice. Colors
(on-line) are for convenience of distinguishing one polymer from another. Though the absolute limit for
multiple occupancy is 88 for this illustration, no bond is more than triply occupied. This specific network
does not percolate (in the vertical direction)
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cells. The polymer segments act as barriers for the hopping and, with finite temper-
ature T , control the hop through an activation probability: exp {−mε/kT }, where ε

represents the energy barrier associated with just one segment. In the T = 0 limit,
only unoccupied bonds can be traversed and so, diffusion across the film ceases when
the occupied bonds span the transverse direction. To be specific, we can fill/empty
the left/right boundary of our lattice with particles to model the pressure gradient in
the experiment, and impose either periodic or brickwall boundary conditions on the
top/bottom rows. Then, if the polymers “percolate” in the vertical direction, no current
can flow in the T = 0 limit. Our goal here is simple: For a given “mass density” of
the polymers ρ (i.e., a fixed density of segments), how does the percolation threshold
depend on �? For � = 1, the problem is easy. First, compute the relationship between
ρ and p, the probability that a bond is occupied. Then the critical density, ρc, is just
given, via this relationship, by the critical occupation probability: pc = 1/2. Now,
imagine joining the segments together to form �-mers (but keeping ρ, i.e., the
total number of segments, fixed), so that the number of randomly placed polymers
is now reduced by a factor of �. How does ρc or pc change? This linking process
obviously induces non-trivial correlations amongst the occupied bonds. In this sense,
we are exploring the effects of a very special type of correlation [5] on the percolation
process.

2 Simulation results

We are not aware of existing, nor are we able to develop, analytic solutions to our
problem. Yet it is relatively simple to simulate the system. The main challenge is com-
putational power, since many realisations of each ρ and � must be tested on lattices
of various L’s so that finite-size scaling techniques can be applied. Simple minded
simulations with finite systems will always produce a smooth function P(ρ) - the prob-
ability of having a spanning cluster as a function of ρ (or p). Thus, only crude estimates
of the percolation threshold can be obtained [3,6]. Only in the thermodynamic limit
will P be a step function, being zero and unity, respectively, for ρ below and above ρc.

The setup of our study is straightforward. Consider M ordinary random walks of
� segments, randomly placed on the bonds of a square lattice. Defining N (∼2L2 for
this study) to be the number of all bonds in a system, our control parameter is the
density of segments

ρ = M�

N
. (1)

In experimental setups, a convenient control parameter is the mass density, which is just
ρ times the mass of a segment. On the other hand, the conventional control parameter
in the theory of bond percolation is p, the probability that a bond is present. For our
model, a “present” bond is one occupied by one or more segments. Thus, defining No

as the total number of occupied bonds, we have the “occupation probability”:

p = No

N
. (2)
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Due to multiple occupancies, p �= ρ in general. In fact, there is a whole distribution
for p associated with a given ρ, since not every realisation of the network will have the
same N0. Let us just focus on the average occupation probability, which we will simply
denote as p. The relationship between ρ and p depends on � and is tractable (even
for finite lattices) albeit somewhat tedious. Starting with B�, the average number of
distinct bonds covered by a walk, we have 1− p = (1 − B�/N )M , so that for N → ∞,

1 − p ∼= e−ρ A� (3)

where A� = B�/�. Now, B� can be found through its generating function [7]

B̂(z) ≡
∞∑

�=1

B�z�

= 4z

(1 − z)2 [3 + (1 + z) G (z)]
,

where G(z) ≡ ∫
k

∫
p [1 − z (cos k + cos p) /2]−1 and

∫
k ≡ ∫ π

−π
dk
2π

(for an infinite
lattice). Here, it suffices to state that A� is a rather dull, monotonically decreasing func-
tion: 1, 7/8, 5/6, . . .. It merely reflects the intuitive notion: There are more chances
for longer walks to traverse bonds repeatedly (especially in low-dimensional systems
such as ours). The large � behavior is non-trivial and more interesting, but that is
outside the scope of this article.

For our studies, we generate up to 107 realisations of such �-mer configurations
with various ρ and L . Histograms of those that “percolate”, i.e., contain at least a
spanning cluster, are compiled. For large N , the spread in p is small and there is little
difference between this ensemble and the one with a single p fixed through (3). To
access system sizes much larger than previously investigated, we exploit the Hoshen-
Kopelman cluster counting algorithm [8], so that our maximum L is 8192 here. Finally,
finite-size scaling methods are used to determine accurate values for the percolation
thresholds pc (�) (or ρc (�)), as well as critical exponents. Due to space limitations,
we will present only the results here, deferring the details of this analysis to elsewhere
[9].

Figure 2 shows the percolation threshold as a function of �. While pc is a monoton-
ically decreasing function of �, we note that, remarkably, ρc is not monotonic. As
a result, “re-entrant” behavior can be manifested by choosing ρ appropriately and
tuning �. For example, if we randomly fill 72% of the bonds with single segments,
there will be a spanning cluster. But, if we “tie every other segment together” to form
dimers, we would break enough connections in the macroscopic cluster so that the
network no longer percolates. This demonstrates how strong the effects of correla-
tions can be. Yet, if we continue to tie more segments together, a percolation cluster
reemerges (for � > 20, in this case). An intuitive argument for these unexpected prop-
erties is as follows. First, the behavior of pc can be understood in terms of the typical
shapes of random walks. Contrary to naive belief, they are not isotropic: For large �,
rotational invariance dictates that the average shape is isotropic. However, if we first
compute, say, the eigenvalues of the moment tensor of each walk, and then perform

123



62 J Math Chem (2009) 45:58–64

0.5

0.65

0.8

1 10050 1000

Fig. 2 Percolation thresholds for a collection of random walks of length � = 1, 2, 4, . . . , 256. ρc is the
critical density of segments, beyond which the polymer network spans our system. Here, 1 − pc is the
(threshold) probability that a bond is unoccupied by segments. Its rise with � implies that longer chains are
“more efficient” at forming a spanning cluster

the ensemble average, the distribution peaks at unequal values [10]. Since moment
tensors with two different eigenvalues can be represented as ellipses. Further, there is
a long tail in the distribution of eccentricities [11]. In a nutshell, random walks are
“long and thin.” Now, (mono-dispersed) ellipses with higher eccentricity are known
[12,13] to be “more efficient” at spanning the system. In other words, longer random
walks are “more efficient” at forming bridges and require fewer (occupied) bonds to
span the system. By contrast, this picture is more complex when viewed in terms of
the mass density, ρ. Longer chains are “less efficient” at occupying bonds (due to
more repeated bond traversals) and the two competing effects lead to the observed
non-monotonicity in ρc (�). To predict which effects dominate at which � is clearly
non-trivial and remains a serious challenge. Beyond this issue, we see from Fig. 2 that
1 − pc is practically linear in ln �. On closer examination, we find peculiar, though
small, deviations which fail to fit well to polynomials (in ln �) as high as a cubic. Sys-
tematic errors in the numerics, though conceivable, are unlikely, leading us to suspect
that these small “oscillations” may be an inherent and intriguing property. It would be
very interesting to investigate the asymptotics for large �.

3 Summary and outlook

In this article, we considered a well posed problem: How does the percolation threshold
change if the bonds on a square lattice are correlated through “being tied together”
into random chains of length �? Using computer simulations, we find that pc, the
critical bond occupation probability, decreases monotonically with �. By contrast, ρ,
the threshold in terms of the mass density, displays a more interesting structure, leading
to a curious “re-rentrant” phenomenon. At present, we only have an intuitive argument
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for these complex behaviors. When an analytic result of pc (�) becomes available, we
may be able to develop better insights into these remarkable properties.

From a purely theoretical viewpoint, there are obvious generalizations of interest.
The most urgent, so that comparisons with physical experiments can be made, is
an extension to three dimensions. Of the many possibilities, one is to use a cubic
lattice, with the particles again occupying the cells. Since the “barriers” between the
cells are the faces, we should model the polymers by random walks on these faces.
For example, we can let an �-mer be a sequence of � random steps across the
diagonals on the faces of the cubes and, at a vertex, the next step can take one of
twelve directions. Furthermore, there are two percolation-like problems: Of course,
we can look for a cluster of segments that span the system. The other is a “dual”
problem, suitable for considering particle currents: Labeling a face as “occupied” if
there are one or more segments on either diagonal, we may ask for a critical density
of segments so that the occupied faces block all pathways for a particle to traverse
the system. Unlike in two dimensions, these two percolation thresholds are clearly
distinct.

Another interesting theoretical question is crossover. Above, we have considered
the thermodynamic limit (L , M → ∞, finite ρ) with fixed �. The other extreme is to
let � diverge with N while keeping M fixed at unity (just one polymer). In this limit,
P (ρ) is simply related to the span of random walk; it is smooth and analytically known
[10]. How does the system cross over from the percolation problem posed above to
this other extreme? These issues are particularly interesting in two dimensions, since
� ∝ N ∝ L2 means that the radius of gyration is precisely proportional to L . Thus,
naive considerations alone do not offer an immediate answer to percolation as the
system size becomes macroscopic.

Finally, let us briefly mention some of the many aspects of the experiment which
remain to be investigated. (a) Self-avoidance may be important. Certainly, our theo-
retical percolation problem will be quite different [5]. (b) When the film is created
from quenching and stretching a melt, there may be correlations frozen in from this
process. How can these be incorporated into a model? Stretching induces anisotropy,
so that one simple generalization of the problem studied above is to have biased
random walks instead. (c) The experiments are performed with non-vanishing T , of
course. The presence of a spanning cluster (percolation) alone will not make the cur-
rent vanish. The distribution of multiple occupancies will play a role. Thus, we should
also take into account p(m), the probability that a bond is occupied by m segments.
How this depends on ρ is clearly more complex than p (ρ) above and it can be com-
puted also from the results in [7]. To fully understand this phenomenon at a satisfying
theoretical depth will be highly nontrivial. On the other hand, it is straightforward,
though computationally intensive, to perform simulations so as to find how the average
current depends on the various properties of the network and T [14] and to provide
meaningful comparisons with experimental data. (d) Finally, since the experiments
probe the effects of aging, we will need to go beyond randomly generated polymer
networks and introduce a model for the dynamics of the polymers. To explore these
dynamical issues will be challenging, even if we rely only on simulations. In this
sense, our work here should be considered as a very small, initial step towards the
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goal of understanding all the intricate facets of gas permeation through thin polymeric
membranes.
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